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ABSTRACT

Laminar incompressible flow in rectangular channels is considered. In
Part I, the entry region is evaluated by a boundary layer/potential core anal-
ysis. It is shown that the three-dimensional displacement induced potential
flow can be described with a pair of two-dimensional potential functions.
Second-order boundary layer solutions, with and without surface mass trans-
fer, are determined; an interesting seacondary flow reversal is predicted. In
Part II, numerical solutions are obtained for the viscous channel equations,
which are derived from the asymptotic theory of Part I. A two stream
function, velocity, vorticity system, independent of the Reynolds number, is
solved with a combined iterative ADI/point-relaxation numerical procedure.
A single calculation applies for all Reynolds numbers, which appears only in
the coordinate scaling. The axial flow behavior of Parts I and II are in good
agreement in the asymptotic entry region where both analyses apply. Sec-
ondary flow reversal is calculated; however, the grid is too crude for quanti-
tative comparisons. Numerical solutions are obtained until fully developed
conditions are achieved. Agreement with experimental data is good.

NOMENCLATURE
a = channel half height B= constant 1.21678
b = channel half width €= 1 for rectangular channel and
f = defined by equation (I. 4a) zero for two-dimensional channel
A = parameter defining mass n= boundary layer coordinate
! >_1 transfer A=b/a
} e P = pressure v = kinematic viscosity
H Re = Reynolds number based on £ = normalized distance along the
i o channel half width channel
‘ (& u,v,w = velocities along the coordinate p = density
! axes o= a/b
' wd U,V,W = induced velocities in inviscid = velocity potential
flow ¥ = stream function for cross flow
o .,—‘_ x,y,2z =distance along the coordinate (1= stream wise vorticity
g | . axes
-
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Subsevipts

ent = entry n = surface normal direction
0 = zeroth order m = represents mass transfer
1 = lst order i, j, k = characterize the finite-difference
e = edge of the boundary layer grid at the point §,y, 2z
Superscript
* = iteration ~ = normalized value
INTRODUCTION

Laminar incompressible flows in straight two-dimensional, axisymmetric
and rectangular channels have been previously investigated by a variety of
analytic and numerical techniques. These are typified by the linear boundary
layer (Oseen) approximation (1] for evaluating the axial velocity and pressure
history downstream of an initial entry region, more exact numerical analyses
using the boundary layer [2, 3] or Navier-Stokes equations [4=6], and finally
a boundary layer/potential core expansion method [7-9] that models the flow
in the entry region.

From these investigations, the internal flow in a three-dimensional rec-
tangular channel can be portrayed by the various regions depicted in Fig. 1.
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Fig. 1 Channel geometry

At the leading edge, a small Navier-Stokes entrance region, where x=O(R 'l),
develops R = U.ai‘-’ is the Reynolds number based on the channel half-
height a, th€ kinematic viscosity V, and the undisturbed stream U-. The
axial distance x is norrhalized with a . Complete Navier-Stokes solutions
are required in order to describe this entrance flow. However, for large
values of R_, this length is so small that extraordinary axial grid resolution
is required; moreover, the surface viscous layers are so thin that an ex-
tremely fine mesh is also necessary normal to the channel walls. For these
reasons, an accurate description of this leading edge flow is quite difficult to
obtain. Satisfactory solutions are not currently available, and this flow will
not be considered here.

Following the Navier-Stokes regiun is the so-called entry flow, where
x = O(1). For this region, the axial gradients in the surface viscous layers
have diminished, and therefore boundary layer theory is now applicable. As




the boundary layers grow downstream,' the potential core will be appreciably
affected by the viscous displacement effects. A systematic matched viscous/
inviscid expansion procedure is required. This analysis has been completed
for two-dimensional cascades [ 7] and inlets [8,9] . Agreement with solutions
of the complete Navier-Stokes equations [5] is quite good, so that the validity
of the boundary layer procedure has been established. In the downstream
asymptotic portion of the entry flow, where x >>1, the solutions ;asume a
particularly simple form in terms of the coordinate 5 = A2x/R _)?. The con-
stant g= 1.21678, and £ is small but finite; e.g., §<0.2 . Thefefore, for
large R_the entry flow can extend many channel widths downstream. In this
asympt&ic entry region the axial velocity is uniform across the potential core
and the effects of different initial conditions are no longer discernible {7-9].

Further downstream the surface boundary layers become so thick that they
fill a significant portion of the channel. The boundary layer/inviscid core ex-
pansion procedure is no longer convergent and a fully viscous channel flow
must now be considered. In this flow domain € = O(1) and the axial flow gra-
dients are small, but finite, throughout the channel. Boundary layer-like
equations govern this flow regime. Numerical solutions are required. Finally,
for § =% >>1, the axial gradients vanish entirely and fully developed con-
ditions a$& achieved. The distance gent has been termed the channel "entrance
length'.

In the present analysis all flow regimes downstream of the leading edge
Navier-Stokes flow are considered for rectangular inlets. The paper is given
in two parts. In Part I the entry region is considered with a matched boundary
layer/potential core procedure similar to that used in two dimensions. This
analysis applies for a three-dimensional cascade or what is more appropriately
termed a baffle configuration. The solutions for the asymptotic entry flow,
where the effects of the external geometry vanish, [9]) are obtained by trans-
form methods. As in two dimensions a uniform axial flow is found in the po-
tential core region. Second-order boundary layer solutions, with and without
surface mass transfer, are obtained for both the axial and secondary flows.
A simplified result is found for the secondary flow behavior in the potential
core; in the boundary layers, the secondary flow closely resembles that found
along an infinite axial corner intersection. (10,11]

In Part II, numerical solutions are obtained for a square inlet, although [ sorccron for l
hi

the analysis is developed for a rectangular channel. These results can be con-
sidered to apply from the asymptotic entry region to the fully developed region. ‘7§ ite
Comparisons with the analytic solutions for the asymptotic entry flow, where ¢ Buff ¢
the analyses of Parts I and Il overlap, are possible. Of particular interest in e Lk
this investigation is the evaluation of the axial shear stress and the accurate 00
resolution of the secondary flow behavior. Previous numerical studies (2-4] IGATION ...
of this geometry have concentrated on the axial velocity and pressure distri-

butions. One of the conclusions of the present investigation is that this axial St
flow behavior is virtually insensitive to the treatment of the secondary flow,
although the inverse is not true. In the present study, converged secondary
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flow solutions are obtained, and within the limitation of the relatively course HSTRIBUT
grids considered here the solutions appeir to be quite reasonable. . TBeL AYAIL aad

It is shown that a system of boundary layer equations describe the entire
channel flow downstream of the entry region, where 5= O(l). With an appro-
priate transformation of the axial coordinate from x to £ the Reynolds number
R_ can be scaled out of the equations. Reynolds number dependence appears
ofly when the physical axial location x {s specified. A system of equations
inc]uaing the axial velocity, axial vorticity and a pair of stream functions for
the rotational secondary motion is developed. The axial pressure variation
or surface shear stress is fixed by mass conservation. A predictor-corrector
method is used for the axial velocity and vorticity, and a point relaxation pro-
cedure is used for the secondary motion,

Complete numerical solutions with and without secondary motion have been
obtained. Near the entrance a small overlap region where both the analytic
entry solution and downstream numerical solution apply is discerned. The
agreement is quite reasonable, even though only a few grid points lie within
the very thin boundary layers. The numerical solutions for the secondary
motion exhibit a reversed profile predicted by the entry solutions of Part L

3




ot

PART I - ENTRY ANALYSIS

S.G. Rubin and S, Saari
1.1 Flow,Description

The flow behavior in the entry region of Fig. 1, where x = O(1), is con-
sidered. The entry flow is characterized by the formation of thin surface
viscous layers with a large central inviscid core. A viscous/imviscid ex-
pansion procedure is applicable. For the entry analysis, rectangular channels
formed by a doubly infinite baffle configuration is assumed. A uniform ir-
rotational upstream flow is also specified. In reference [12] rotational entry
is also considered. The symmetry inherent in this baffle geometry greatly
simplifies the evaluation of the displacement induced core flow. The entry
analysis for a single inlet is very complex. For two dimensions this geom-
etry has been evaluated by a Weiner-Hopf technique [9]; it has been shown
that in the asymptotic entry flow, for x>>1 or § = O(1), the effects of the en-
trance geometry are no longer important. Therefore, the cascade and single
inlet solutions agree in this region. For the rectangular channels considered
here, the asymptotic entry behavior in the core region is determined by a
Fourier transform solution for x > >1. The entry flow for x = O(l) is de-
termined by the method of images. In both cases the three-dimensional rec-
tangular channel solution can be represented by a pair of locally two-dimen-
sional solutions previously determined in reference (7] .

I.2 Viscous/Inviscid Expansion Analysis-Potential Core Solution

In the entry region the large axial gradients, important in the leading edge
Navier-Stokes flow, are small when compared with the surface normal vari-
ations and therefore boundary layer theory is applicable. This behavior has
Ereviounly been observed in the entry region of two-dimensional channels,

7-9]; further confirmation for the asymptotic entry region of two-dimensional
inlets, where higher-order terms in the boundary layer expansion are re-
quired, is given in section I. 3 of the present paper. In this section, the
leading terms describing the boundary layer and potential core behavior are
obtained for the entry and asymptotic entry flows.

Boundary Layer Analysis

The flow in the entry region is depicted in Fig. 2. Thin boundary layers
grow along the walls

5 and an inviscid core
‘, region is located cen-

trally in the channel.
cL " cL At the corners the in-
terferring boundary
layers lead to a
boundary region termed
' the corner layer. This
CORE flow has been studied
o extensively for an in-
finite corner, see ref-
erences [10,11], and
can be neglected to
lowest-order in the
boundary layer analysis.
CORNER SOUWOARY LavER cL We will return to the
by corner flow later in
this section.

Fig. 2 Description of entry flow
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Since the flow gradients are large only in the surface normal direction, the
standard bounda ry layer equations are obtained on each wall. For the re-
mainder of the boundary layer analysis in this paper, the wall'y = -a will be
considered. Similar results are obtained for the other walls. The boundary
layer equations are

u +v +ow =0 > (I.1a)
x y z
i+ W S 0RE e ep el 0P u ) (I 1b)
x y z x Re Yy 2z c :
Py = 0 : (1. 1c)
o AT+ qUN_ = -0p tee (@ +00 W ) (1.1)
x y z P2 R: yy zz . :

where u,?,\_i'i are normalized with U. ; X,y with a;z with b and p with oUi 3

0 =a/b=A", The diffusion terms in the axial direction are neglected as
they are O(R_ ") smaller than the surface normal (y) variations, In the
boundary laysr. cross derivatives (z) are also small when compared with
normal changes, but are important in the corner layers and may be required
for the second-order boundary layer analysis of the following section, Using
standard boundary layer assumptions, we have

4 -3
u'uo+Re u1+... P (I. 2a)
TN S s
v-Re vl+Re v2+... ’ (1. 2b)
o e 1.
w-Re w1<l>Re w2+... 5 (I. 2¢)
wherey = O(R " °); x,2=0(l). To lowest order in R 4 , equations (I.1)
become S e
u + Vly =0 . (1. 3a)
x
u, ug + Vl g = RL u . (I. 3b)
° o, y = oyy
a5 - |
u w +V W =-0p, + w % (I. 3¢)
gl Wil lv 1, "R, Tlyy

The axial pressure gradient is zero, since the inviscid stream is undisturbed
and uniform. Equations (I. 3) with the boundary conditions u = Vv = 0o at y=-1,
and u~U_ for y~y_ are precisely those of the flat plate boundary layer. The
subscript e denotes the edge of the boundary layer. The solution of these
equations is well-known [13] and given by

s f M, @R el m -y (1 42)
where .
foM+f ML M=0, { (0)=1f (o) =0 ' (1. 4b)
f; (o) = 0.469600 :
ns )'Reé(l’-x)'é . (L 4c)
3
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Introducing the notation §Z B ﬂz Zx/Re , we have n= -é—e . For ¥y OF
n-®, we find _ -3 2g-1 -1 ; o
V= 8(2xR,) "= 8T R_" , whereg=1.21678 .

Potential Core: Displacement Effects

The surface boundary layers perturb the central inviscid core. The
effective core area is diminished thereby accelerating the flow. Since the in-
viscid flow is irrotational the wee-dimensional Laplace equation must be
solved for the perturbed core fld*v, Capital letters are used here to distinguish
the potential flow variables from those of the boundary layer. A unified no-
tation is used in the figures. Therefore,

1 7
’r:U.[x+Re"pl(x.y.z)],andv rol=0.
Also,

e -3
U=o _=U +R_“U

1 v ete.
By matching with the inner boundary laye;-s, we obtain for x>0 the boundary
conditions

v =8 (?.x)'é (. 5a)
n

on all walls, where n denotes the surface normal direction measured positive
inward; e.g. on y=1, n= -y, etc. For x< o, with the baffle configuration, the
symmetry conditions lead to

M =0 ., (I. 5b)

n

Finally, for x—- @ we require the uniform flow condition, = 0,
In view of the symmetry, and the fact that the boundary * conditions (1. 5)
are independent of y and z, we can write

@l (X, Y, Z) > 'v} ‘xl Y) * CDZI (X, Z) '

where wl and mzl satisfy two- dxm nsional Lgplace equations. The boundary
conditions on y= %1 apply to m , since c} ® 0, and those on z = %1 apply
to . Therefore the three-dimensional La‘lace equation and associated
boundary conditions are satisfied by a pair of two-dimensional solutions each
corresponding to the entry solution in a two-dimensional cascade. This is a
significant simplification, since the two-dimensional solutions are given in
Van Dyke [7] by the method of images and by Fourier transform techniques.
The complete three-dimensional analysis and details of the solution are given
in reference [12]. The image technique is preferable for the entry flow, while
the transform procedure is preferable in the asymptotic entry region. The
analysis and solutions are summarized below:

Image Solution
&ﬂﬂ the appropriate image or Green's function distribut:ons, we obtain
the following solutions:

a 2 2. ]
"1’ :B ‘!x 41! ((x +(Zn+y)) + x ) (1. 6a)

x +(Zn+y)

z((x + (2n- y)zfu )*}

e + (2n-y)




Note _that cpz does not appear in this expression.
W, =9 is obtained from (I.6a) with y=-0z and n-0n inside the
summ‘atiokz n=1to w.

2 Zé é - 3/3
oo S L) o T (enta)
x ty n=

3 \¢ 2\ 3
[+ @ney)®) -x . [6E 1 @nty)) -x
L g o e Gl
x" + (2n-y) x + (2nty)

3 3 .
2 2
- (ﬁz—igzz-zj-)—'-"—) + 2[?.3/a ot ((m-l)g -m*) (1. 6b)
x +0 2 m=1
3\ 3 3
(el rem2?d) x|, [P+ & emind) -x
xz + oz (Zm-z)z xz + oz (Zmi-z)z L

The centerline axial velocity for different rectangular inlets is shown in Fig.3
for R_ = 75. Typical solutions
% for the streamwise isovels at
Y€ myers various locations in the entry
flow are shown on Fig. 4

L for different rectangular in-
lets. It is interesting to note
that for very small values of
x the behavior is monotonic.
For larger x values a valley
in the axial flow distribution
is predicted. This behavior
has been observed in two-
dimensional NHavier-Stokes
solutions [4-6]. Finally, for
even larger x values the be-
havior is once again mono-
tonic, but the direction of in-

i ¢ y = ’ o . creasing u has changed from
o2m0 039 (4 that found for small x. A
typical solution for a 5x}
Fig. 3 Axial velocity distribution in chann 1 is shown on Fig. 4d.

entry region -rectangular channel

Transform Solutions

If the potential problem is solved by Fourier transforms, the same pair-
'Evile tho-dimenlionnl behavior occurs and the solution for v is as follows
7,12]) :

-
-isx
», (x,y,2) = 4;&; {1+ i-lgs)e cosh s(l-y) ds )
- l|l| sinh s
-
| (1 + isgn l)e'"x cosh os(l-z) ..
an? = .'.'§ sinh o8
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Fig. 4a Streamwise isovels at inlet - Fig. 4b Streamwise isovels in entry
square channel region-square channel
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X *00%
€ -0 o122
Y
1
1 T
Fig.4c Streamwise isovels in entry Fig. 4d Streamwise isovels near
region-square channel entry-rectangular channel

The velocities ‘”1 etc. are difficult to evaluate for general values of x, but
for x>>1 (the agymptotic entry flow) it is possible to obtain asymptotic
expressions using the generalized Fourier transform concept outlined by
Lighthill [14]. More complete details of this procedure can be found in ref-
erences [7,12] . The results,for x>> 1, lead to the following expansions of
solution (I. 7).




Ul=(ﬁx:2é9;x (1+0)+

2
o X P ey e o (32 ) ] Qs A
5 /2
V1 =g = -Z-’k 8y [x._é + (l-yz)/Bx / ]+ ' (1. 8a)
y

W, = '[.lzz -Z_% ez[xdb + J(l—zz)/sxsla]in....

The non-monotonic behavior seen earlier in the series solutions is still
apparent in the asymptotic solution. In reference (12] the asymptotic and
series behavior for x<o is presented. Here we are concerned only with the
internal flow.

For very large x>>1, the full solutions for the velocities become

U~1+(1+0)% +.... :
ol s‘lne‘l N i : (L 8b)
W m e

e

Therefore the asymptotic entry flow and onset of the fully viscous channel flow
have the following properties in the central core region:

(1) The axial velocity is uniform across the channel.

(2) The relevant axial flow coordinate is £ = 0(1) 3

{(3) The secondary velocities are O(Re-l) and not O(R_~ ) as in the entry

flow boundary layers and potential core. =

This behavior has previously been found for two-dimensional channels and
corresponds to the form originally assumed by Schlichting 03] in his expansion
techniqge. For two-dimensional channels V is given by (I.8b), W= 0 and
{3 g O A

Fig. 5 depicts the axial flow variation along the channel centerline as
obtained by the image
and asymptotic solutions.

ve : “,r mn:'u;u.:;u; SR R S It is interesting that the
-~ —SERIES SOLUTION asymptotic form is
Re*1000, Asi.0 achieved for relatively

- .0,
Al 5 small values of x, even

though it has been de-
rived for x>> 1, Similar
behavior is found at
other channel locations.
This allows for the use
of the simplified
formulas (I. 8b) over a
significant portion of

the entry region.

SRR L " A bl . "

Fig. 5 Entry flow solutions- Square channel
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Finally, Fig. 6 depicts the qualitative behavior of the secondary flow
stream lines projected onto
the (y, z) cross plane. For
a square channel these lines

] are straight, for a 2xl
channel parabolic, and in
o 1 general they are given by
the equation:
P —
inl ARE =
g U -y Ly
ik b 2 8 o
N—1
N—1 Z=c¢y° or z=coy’,
— (1. 8¢)
where ¢ is a different con-
! LLI s stant for each of the stream-
e lines. For a square channel
2= cy; for 0=2 , z=2cy”“ ,
(it as2b etc.
y
b——— e z
—t
b
(i) a=b

Fig.6 Asymptotic flow projection on
cross plane.

I.3. Second-Order Boundary Layers - Asymptotic Entry Region

With the asymptotic potential solutions (I. 8b) the second-order boundary
layers can now be evaluated. With the expansions (I.2) in equations (I.1),the
axial and secondary motion along the_furface y =-1 are described by the
following equations. Terms of O(Re ) are retained.

-3 - "
u) +Re VZy*o“’l =0 ’

x z

-3 -% _1
u, Yy +u1 u, +Re v, u 4-vZ Re uoy+Plx'R— u '
x x e yy

- e & - I =
u, wlx 'rRe vl wly- -cplz*ﬁz wlyy

As Y=Yq ul--Ul : ‘;1"‘;’1 from (I.8b); therefore, =piLn (l+0)8(2x)—é.
-3/2 .3 /3 X

and -op, = €2 fzx

two -dh‘w‘encioml channels.

Assuming that

; €= 1 for rectangular channels and 0=€= 0 for




prer

w= ) (M) + (149 8€; () = u_ + Re"l‘ i

W)= ~caz(zx)'*h’m)=wlh‘(m '
vthe following equations are obtained for fl('n) and h(n) :

"+ (f ") =1 . (I. 9a)
and

f'; +L € - £ 1] & 2f’° f,= -1+ ¢€f h/(+0) : (I. 9b)
where from continuity ¥, = 8[(1+0) (N£] - 26,(M)) + eh(n)] -
The boundary conditions become

(1. 9¢)

f(0)=1f] (0)=h’(0) =0 -

lim £, (M=h'(M)=1

N~e

Equation (1. 9b) for the secondary velocity w, is identical with that derived in
earlier studies of the flow along an unboundgd corner [10) . An interesting
secondary flow reversal is predicted, and this behavior is shown qualitatively
on Fig. 6. The core solution was discussed in section 1.2 . The reversed
flow profile is depicted more accurately in section 1.4 .
The second-order axial flow is described by equation (I. 9a).
dimensions (€ = o) this equation was considered by Schlichting (13) and Wilson
8. . Solutions are shown on Fig. 7. Also presented is the potential core

For two-
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Fig. 7b Two-dimensional entry

Fig. 7a Two-dimensional entry
flow solutions

flow solutions

behavior, the first-order Blasius solution, and a composite viscous/inviscid
profile. Comparisons are inade with the Navier-Stokes solutions of Wang and
Longwell [5]. The agreement is reasonably good for £< 0.2 and therefore
the applicability of the expansion procedure in the entry Tlow is confirmed.
For three-dimensional flows, solutions have been obtained for a square inlet
(0 =1). These results will be presented in Part II, where comparisons with
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the viscous channel solutions
are included. The boundary
layer-like behavior found in
"{" . 4 e z ] (1. 8) is used to describe the
HICOMBONTE F 15 om S fah o LRIV downstream viscous channel
L R ' ° flow. The expansion procedure
b2 4 1 shows evidence of divergence
4 for values of Z>0,2 . Higher-
{: ; ° order terms (not shown) exhibit
L0 I,- 1 behavior typical of divergent
| asymptotic series. Also, eigen-
° values of equation (I. 9a) must
] 1 then be included in the expansion.
| | These introduce unknown con-
* ' stants which must be evaluated
£ 1 lgy other means, see references
] | £8,9] .
A final comment on the
°'|L1 1 secondary behavior in the entry
| ReT5, X+3 3333 region concerns the corner
| \

)
" BLASIUS

layers of Fig. 2. The corner
flow for an infinite geometry has
been presented in great detail in
earlier studies (10,11] . Sig-
_"";"’ e 5 5 o nificantly, for the channel the

secondary flow behavior near
the corners (z—*1) gives

,’ § «0 3620

o2t 308
© WANG - LONGWELL \

Fig. 7c¢ Two-dimensional entry
flow solutions. \:1 ~+8(2x)

1
2

=
Re h' (n) .

This is precisely the result found for the unbounded corner flow and therefore,
in the-asymptotic entry region, the solutions of references U0,11J apply to the
channel as well. A swirling motion shown qualitatively on Fig. 6 is obtained.

This complet es the entry flow description for the axial and secondary
motion in the potential core, the boundary layers and corner layers. Com-
parisons with numerical solutions are given in Part II. In section 1.4 a brief
description of the flow behavior allowing for surface mass transfer is pre-
sented. The effect of injection is particularly interesting.

1.4 Surface Mass Transfer

In view of the relative simplicity of the asymptotic entry flow analysis, the
effect of surface mass transfer, both suction and injection, on the secondary
motion in this region is now evaluated. The effects of mass transfer on the
streamwise profiles have previously been calculated for a flat plate by the
similarity analysis of Emmons and Leigh (15] . The mass injection is_of the
type V~x £, or interms of ? and the normalized velocity v=IR a ¢y,
we obtain v= constant. For a uniform outer stream, as occurs in fhe asymp-
totic entry region for small © , the modified boundary layer equation for
a3 f;_n('n) on the lower channel wall becomes

”

ol ! SR - N

m m m
where
= 4 = i ~
f(0)=m ' (0)=0, ;. ﬁf:n(n)-‘l' £ (n=-n-s_J

The normalized surface velocity v is given as
P-l

v = m

m>o for injection; m<o for suction, Q= B = 1.21678.
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The solutions for f _are tabulated in reference [15] . The asymptotic
boundary condition™ on the displacement velocity v becomes

llmn_‘.V"Bm/B

8 is tabulated for several values of m in Table I; also presented are values
m of the shear stress parameter

Table 1: Shear stresses with f:n(o) ;
mass transfer The normalized secondary
= velocity w can be defined as
N e 5
m  |By=-hy (0)] fy (O) w= (8, /om (M)
-0.707 3.ele 0.0502 Whene
-0.49% 2.9913 0.1812 w p 7kt
-0383 | 20929 | 0.2326 B P iy By =}
-0.177 1.6108 0.3460 and
~0.0707 1.3665 0.419! hi (0) = o,lim b’ _(n)-1
0.0 1.21678 0.4896 N-e
0.0707 | 1.0738 | 0.5214 ki
0.177 | o0.8766 | o0.6012 m(©®) = -Bp,
0.353 0.5724 0.7394 : ’ ’
f f
0.495 | 03475 | 08538 R o el e
0.707 0.0330 1.0308 Mass injection increases the
0.778 - 0.0670 1.0910 secondary flow reversal as well as
0.648 -0.1650 11818 the streamwise surface shear

stress. With large suction the
secondary flow reversal can be
eliminated. On Table 1 it is seen

— nnm) n

- taln)

1 (0)e-0 383+

sl
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Fig. 8 Effects of mass injection on asymptotic velocity
profiles in entry region.

that h” (o) changes sign at about m=0.71. The potential core solutions (I.8)
for vand w are modified by the factor g_ /8, but the projected streamline
pattern is unchanged. In the surface boundary layers the secondary motion is
accentuated or reduced as depicted in Fig. 8 . It is evident from the figure
that the secondary flow patterns are significantly altered with even moderate
mass transfer.
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Part II. - Numerical Solution For A Square Channel

S.G. Rubin and P, K, Khosla

1I.1 Flow Analysis - Fully Viscous Region

The boundary-layer/potential flow expansion procedure applicable in the
entry region Fig. 1 and described in Part I fails in the downstream flow where
x>>1 orf = 0(1) . From the results of Part I we expect that the entry anal-
ysis (both series and asymptotic solutions) will apply many diameters down-
stream, e.g., for all £<0.20; but, for larger £ values, the errors in the
asymptotic boundary-layer/potential core expansion procedure increase as
the boundary layers grow and begin to fill the channel.

From the results of Part I, it is seen that a fully viscous model is required.
The equations are appropriately written in terms _of the coordinate_az(‘é,y, z).
The normalized velocities are u=u/U,, V=§Re8- viu, w=E R_8 wiU, ,
and the normalized pressure is p=-p/oui. Shiera

-1 -2
p=p°+Re pl+Re P2

See Part I, equations 1.8 for the asymptotic forms required here. Retaining
only the lowest order terms in ER_ in each of the governing equations (see
Part 1, equations I.1), we obtain:

Continuity: 4 Loa = .1

ontinuity ug + v, ow, =0 (. 1)
£ 'Zf g
£ Momentum: ) uzuu; + vu_ + Owu_ +p (II. 2)

g y z OF
y Momentum: poy =0 , ply =0 (II. 3)
z Momentum: Pos =0 s By 7 o " (I11. 4)
Streamwise Vorticity: (O = g - wy A (II. 5)
-2 _2 -1
g8 VO:uQ,'P-rvg-awg-a (uQl + 7v - Gw)
+vQ _+owll +Q(v. +ow)) s (I1. 6)
y z y z
- = ¥ 2 2
where 'r-cuz,a-uy.v - ( )yy+o( )zz ,
and 0 = a/b = )." =1 for the square channel considered here. Equations

(I1.1, 6) are reformulated in terms of a potential function ® and a stream
function ¥ for the crossflow (v,w). We define

v = 'ry to tz and

w =0, - 'y . (I1. 7)
Therefore, (I1.1,5) become, respectively,

%5 = -u, ’ (1L 8)
and

?y=n § (1. 9)
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Equations (II.2,6,8,9) describe the unknowns u,(l®, ¥. vandw are re-
covered from (II. 7) . The streamwise pressure gradient p.° depends only on
g, as seen from (II. 3,4) and is specified by the mass consérvation integral
JJ uw Gy, 2z)dydz = L. (11. 10)
A

A denotes the rectangular cross-sectional area.
The appropriate boundary conditions are shown on Fig. 9. It is easily

y ¥ 0, us0
| Re-¥yy. ¢y00
n
Q.0 i hel ﬂ-*"
vy *0 u*0
T e i e ol e £
"-o et ¥ 0
2
] 0-0.0-0.0,'0 |

uy*0

€ PRIMARY FLOW DIRECTION
Fig. 9 Finite-difference grid and boundary conditions

proven that these conditions uniquely define 9 and §. The zero normal mass
flux condition on v and w is satisfied exactly. The no-slip conditions are
satisfied indirectly through the surface vorticity relation.

For two-dimensional channels, solutions were also obtained with an al-
ternate formulation in terms of the stream function and vorticity. The surface
shear was determined with the mass conservation condition (II.10) . The
pressure gradient p, was then obtained by application of the momentum
equation (II. 2) at the surface, where the no-slip conditions are applied. It is
significant that fully converged solutions obtained at each streamwise location
by the two procedures were identical. The accuracy of the final solution is
therefore limited solely by the mesh size. A similar vorticity formulation is
possible for three-dimensional flows, although it has not been used here.

Another important feature of the present formulation is the conservation
implicit in the system (II. 8,9). With the Neumann boundary conditions on ®
it is necessary that

j. J Vz p dydz = o (11. 11)
A

With the mass conservation condition (II. 10) we automatically satisfy
J) ugdydz=o, (11. 12)
A

and therefore the integral condition (II.11) is always satisfied. In an earlier
study of this problem Briley [2 applied a similar procedure with a single po-
tential function, but it was necessary to apply an iterative correction factor in
order that (II.11) be satisfied.

More important, however, the additional stream function provides a simple
mechanism for exactly satisfying the vorticity (1) and secondary flow (v, w)
equations to any desired degree of accuracy. In this way we are able to

—
The zero subscript on p has been dropped.
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rigorously examine the mutual interaction between the streamwise and
secondary motions and thereby accurately evaluate the effect of one on the
other. Finally, the asymmetry of (0 leads to the additional condition

II VZ V dydz = o
A

This is insured by the boundary conditions relating § and Q .

The governing system for the downstream flow, £ = 0(1), and ultimately
the fully developed region, £ >>1, has now been described. It is significant
that the Reynolds number R_does not appear directly, either in the equations
or in the boundary conditions. The Reynolds number dependence exists only
in the transformation relating £ to the physical distance x. Therefore, with
the present analysis, the Reynolds number does not enter, in any way, into
the numerical calculations. A single solution valid for all Reynolds numbers
is obtained. If, for example, we consider a channel defined by 0 <§ <1, then
the Reynolds number defines the physical length of the duct. As ﬁ-e Tncreases
the duct length increases and vice-versa.

Finally, an overlap region where both the entry solution of Part I and the
numerical downstream results are applicable should exist. We recall from
Part I that, for a square channel, the asymptotic behavior found in the po-
tential core of the entry region is of the form

u~1+28, ve -y, w~-2 3 (I1.13)
while the boundary layer variation, away from the corner regions,is as follows:

u~fo(n)+ 286 (n) ' (1. 14)
w~-zh’ (n)

These solutions approximate the viscous channel equations (II.1, 2, 6) for

small values of § . Therefore, the numerical solutions for the downstream
viscous channel flow, which are valid only for x >>1, should become meaning-
ful for moderate values of § , where (II.13,14) are indicative of the flow be~
havior. The complete channel flow, away from the small leading edge Navier-
Stokes region, is then described by the composite entry plus downstream
solution.

&_Z Numerical Methods

The governing equations (II. 2, 6,8, 9,10) are solved numerically by a
marching procedure starting at the leading edge § = o, The initial conditions
are assumed to be 1=v =w = 0. The axial velocity u is uniform and satisfies
the mass conservation condition (II.10). At the walls the no-slip and zero
mass transfer conditions are enforced. Since only the quarter channel is con-
sidered, symmetry conditions are prescribed along the center lines. The
complete set of boundary conditions is shown on Fig. 9. These initial values
are somewhat artificial and therefore the numerical solutions become mean-
ingful only after the influence of the initial values become negligible, i.e., in
the asymptotic entry flow described in Part I. In view of the parabolic
character of the viscous channel equations, the only remaining influence of
the initial values will be reflected in the mass conservation integral EIO). This
behavior has previously been verified for two-dimensional channels [4-6] ,
where the asymptotic entry behavior is closely approximated by the numerical
boundary layer solutions [7-9]. As will be shown in the present analysis, a
similar overlap is found for a three-dimensional geometry.

Finite difference discretization is used for all derivatives. These are
centered at the half point £ in marching from § to € | ;i.e., a Crank-
Nicolson procedure. Therngre, . L

C Vi kY, g,k
(9) 143, 5,k _J'lz"—]—' ' (I1. 15a)
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. -, , +u, g -u, s
,j+l, k i,)-l,l;ﬁ“xﬂ.)ﬂ,k i+, j-1, k (IL. 15b)

() 43,5,k

o %, 0 k20, e, e, ki, e, k2%, 5, K0, 51, &
yy'itd, j, k 202

(I115¢)

All other variables are discretized in a similar fashion; z derivatives are
obtained from (II.15) with j<k, k~j and then transposing the subscripts.
Non-linear terms such as uug in (II. 2) are treated with quasi-linearization,
8o that 2 *2

Y5k, g, k ‘

*
2u : u, -
P 0 58 S L
(aug )iy §, k" T5E

where A% denotes the step size and the asterisk superscript denotes the value,
at the new location . ., obtained from the previous iteration. The function
u(§..yj, zk) is denoted’ by u, . .+ Where 8 = (i-1) 48, y; =(j-1)h and 2z, =(k-1)h;
h s J the uniform grid spa&kg in the (y, zJ plane so thgt h=1/N. N i the
number of grid intervals in the quarter channel, see Fig. 9.

For each equation (II. 2, 6, 8, 9) we obtain a system of the form

By %an, i1, 0 PR, 50k PO et gk T P Y, 4, e (I1. 16)
G 7 RN Tl
A. .... F, depend only on the values at £ or of the previous iteration

(a'sterisks'). The full equations are easiﬁ' derived. Equation (11.16) is solved
with an ADI predictor-corrector method for u,Q and point SOR for ¢ §. For
the former the tridiagonal matrices are inverted with the now standard two
pass algorithm. In the ADI iterative procedure the Wl il k Yiel ik and
U1 5.1 g terms are treated implicitly in the predictor" x vl stage

»J=% % and the terms Wbl kel el ik and Uikl 2re implicit in
the corrector stage. This *do B il procedure was
found preferable to the line predictor-corrector method [16] as the symmetry
properties of the flow variables were maintained to a high degree of accuracy.
For the SOR calculations an optimum over- relaxation parameter w17l for a
square uniform grid with Dirichlet boundary conditions is specified;
W2 (1-m/(N+1). This parameter also works quite well on the Neumann pro-
blem (II.8) for ®. For N=10 Was 1,43, For N=20 Wwm1.72. For all equations,
the.system (II.16) is diagonally dominant and appears to be stable even for
relatively large values of &8

Finally, the pressure gradient in (II. 2) is updated by Newton extrapolation
such that the mass flux condition is satisfied. The mass flux integral is
approximated with the trapezoidal rule. The secondary ve)ocities v and w
are recovered from (II. 7).

The iterative procedure can be summarized as follows:

(1) At station giﬂ let Pg, ¥ ¥,0 assume their !i values.

’ ’

(2) Calculate Ui from (II, 2) using iterative ADI.

(3) Calculate Qx+1 from (II. 6) using interative ADI.

(4) Pi41 and 'i+l are found from (II. 8, 9) using SOR.

(5) Update Vil and Wi from (I1.7) .

(6) Update (P§)i+l from (II.10) and return to step (1).
At each £ location this procedure continues until all values have converged
to the specified tolerance, e.g. six decimal place accuracy.

In the vorticity streamfunction method discussed earlier, the evaluation
of pg in step (6) is replaced with the direct evaluation of the wall shear, e.g.

45




T~ on y=-], such that the mass flux condition (II. 10) is satisfied. The
redsure is then obtained by application of (II. 2) at y=-1. The two procedures
ead to identical results in two'dimensional channels. This latter approach

would be preferred for problems in turbomachinery where local separation

bubbles can be evaluated. This approach has previously been considered only

for external flows (18] .

II. 3 Results

The numerical solutions were obtained by considering the quarter channel
with mesh widths h = 0.05 (21 points) and h = 0.1 (11 points), respectively.
Therefore, in the entry flow where the boundary layers are very thin, the
accuracy of the results near the channel walls is marginal. Further down-
stream, as the boundary layers thicken, the resolution increases markedly.
All of the results are given functions of the normalized axial length § ,
where we recall that8® = 2x¢" /R_ . The solutions are independent of the
Reynolds number, except for the normalization Iinherent in 5, v, w. Note that

Tor Iarge R_ even relatively small values of & can correspond to axial dis-
tance of mahy channel widths.

The centerline velocity is depicted on Fig. 10a for the entry flow, and
Fig. 10b shows the entire channel flow to fully developed conditions. Solutions
with the coarse and fine
grids are presented, as
are solutions with zero

e .._.'.o_“, : : ' crossflow (secondary
=—he0.08 NUMERICAL flow). The different
g § "'ﬂo&m“' i initial conditions with
v differing meshes result
P :’S.Ia'ur"m o from the requirement that
P s the mass flux conditions
(I1.10) be satisfied. Also
1 shown are the entry so-
lutions obtained in Part I.

For a Reyholds number
R_ = 75 the series so-
lutions are given; the R
independent transform
result (u~142%) describes
the behavior of u in the
asymptotic entry region.
| Finally, on Fig. 10b the

o 4 experimental data of
{ reference [19) are also
o . 5 ) included. For 0.2>€>0.08
© o002 004 008 008 OO0 o= OWM the entry and numerical

solutions with crossflow

Fig. 10a Centerline velocity near inlet

are in good agreement with each other. The flow dependence on § and therefore
independence of R_ is cvident. The solutions with zero crossflow are some-
what lower than th® bther solutions, but are not significantly different. In
fact, it can be concluded that the secondary motion has only a minor effect on
the axial behavior. As seen on Fig. 10b, agreement with the data is good.
Fully developed conaitinrus are achieved for § = §. t"o‘ 9-1.0. In previous
studies, [1-6] the entrance length has been estimated to be in the range

= 0.89-1.0. From Fig. 10b, it can be inferred that the entry region an-

Sent
Jyth is validupto §= 0, 2,
On Fig. 11 the axial velocity is compared with experimental data. Many

additional comparisons were made, but since the agreement is similar to that
of Fig. 11, and since the axial behavior has been described quite well in other
investigations, these results are not inc'uded here. The axial velocity profiles
along the centerline (z=0) are shown on Fig. 12.
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Profiles for the secondary
velocity near the corner
region are given on Fig.13,
Reverse flow profiles have
been calculated in the
asymptotic entry region.
Similar behavior was pre-
dicted by the entry analysis
of Part 1, section I, 3.

The decay of the secondary
motion as fully developed
flow conditions are attained
is apparent. The resolu-
tion in the boundary layer
region is insufficient to
make quantitative com-
parisons of the numerical
and entry analysis for the
secondary motion. The
flow reversal occurs over
one-tenth of the channel
cross-section or one-fifth
of the total boundary layer
thickness for £ = 0.2. For
the present calculations;
this is at most two grid
points. Even with the
coarse mesh, the axial
profiles (Fig. 14) agree
quite well with the second-
order boundary layer re-
sults present in Part I.
Near the end of the
asymptotic entry flow

(Fig. 14b) large differences
near the boundary layer
edge are apparent. Near
the surface the agreement
is” still quite good. In
Part I the extent of validity
of the second-order
boundary layer theory is
discussed in greater de-
tail.

Finally, the shear
parameter u_ is presented
on Fig. 15 at!various lo-
cations on the surface,
y=-1. For very small
values of § , the numerical
solutions, the undisturbed

Blasius results and the second-order boundary layer solutions are in close
reement. As & increases the wall values (z=0.95 or z = 0.90) decrease
ue to corner layer interference. As the boundary layers grow further, the

mid-point values (z = 0.5) also fall below the centerline (z = 0) solutions.

Second-order boundary layer theory is a significant improvement over the

Blasius values in the entry flow (§ < 0.2); even for larger £ values, where

the theory is questionable, the results are within 20% of the numerical so-

lutions. Once again, the solutions obtained by neglecting the secondary
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motion are quite good. This

reinforces our earlier con-

clusions that the axial flow is
A 5 virtually insensitive to the

e :-‘-s'uf:ma secondary motion. On the other
BOUNDARY LAYER hand, the reverse is not true as
s 2:00 the secondary motion near the
4 rioso walls changes significantly with
NRERC AL 1:09%, »0 0% i i
mesh refinement, which has a
SOLUTIONS 2:090. 010 4

much smaller effect on the axial
flow behavior. Accurate sec-
ondary flow solutions near the
walls would require much finer
meshes, Since there is no
available data for the secondary
motion, finer mesh calculations
were not considered. The so-
lutions in the potential core,
however, are reasonably
accurate. Isovels and Isovors
are given on Fig. 16. The pre-
dicted core velocity behavior
u~1428 and v ~ -y is closely
approximated. The constant
vorticity lines clearly show the
extent of the boundary layer

.00,
. growth.
o 0.2 04 os os 0
h00%~ ene0 |

Fig. 15 Shear stress parameter: y=-1.0

© 26RO CROSSFLOW
h+008%, 2700

II. 4 Summary

Numerical solutions for the flow in a square channel have been obtained
and agree reasonably well with the results of the entry region analysis of
Part I. The numerical procedure is also applicable for rectangular ducts,
and provides solutions for the axial and secondary motion that are fully con-
verged at each axial location. The calculations are Reynolds number in-
dependent, so that for a given geometry only one set of results is required
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for all Reynolds numbers.
The secondary motion shows
evidence of velocity reversal
similar to that predicted by
the entry analysis. Although
the coarse mesh considered
here appears to be adequate for
the axial flow and the second-
ary motion in the potential
core, a finer mesh is re-
quired to resolve the second-
ary boundary layer behavior
near the walls. It is shown
that the crossflows have
little effect on the axial flow
and that in the entry region,
the latter is described
reasonably well with second-
order boundary layer theory.

1]

Fig. 16 Isovels and Isovors: § = 0.225
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